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Abstract— Stated preference (SP) surveys are commonplace in transportation engineering and planning.  When the 
data from such surveys are used to estimate logit choice models, several refinements can be applied to account for 
limitations or departures from the assumptions made in development of the logit model and the estimation techniques 
used with it.  This paper has reviewed three relevant refinements and has applied them in a case study using data 
from an SP survey where three of these adjustments are considered and the results are compared with the unadjusted 
results. Literature review showed there were not many studies with clear explanations regarding the nature and use of 
all three adjustments in common notation all together for SP data. Most papers focus on panel data and not SP data 
issues. This work can be beneficial to researchers and students as the three adjustments have been explained in 
detail using common notation in one single case study. The first adjustment accounts for the effects of using a sample 
with differential sampling rates across the population. The second one accounts for using a sample with differences in 
the probability of being included in the choice set. The third accounts for the effects of a sample with more than one 
observation from individuals. The SP data herein concern choice among alternative passenger modes for a trip given 
that car drive alone is not available, including different arrangements where friends or family members provide 
chauffeuring assistance at various levels of inconvenience.  The intention of this work is to review and explain all 
concepts and compare the impacts of the three adjustments when done separately versus all together in a single case 
study involving SP data. This is important as with applying all three adjustments together as opposed to applying them 
separately or ignoring one, the fit of the model can improve and there could be a statistically significant change in the 
values of the t-statistics and t-ratios of the parameters and constants. 

Index Terms— Logit Model Estimation; Stated Preference; Multiple Observations Per Respondent; Sample 
Observation Weights; Probability of Appearance in Choice Sets; Jackknife Estimation Technique.   

——————————      —————————— 

1   INTRODUCTION                                                                   
 

tated preference (SP) analysis enjoys 
widespread use in support of 
transportation modeling and analysis.  The 
basic approach is to conduct a survey of 

choice behavior concerning a set of 
hypothetical alternatives, use the resulting 
data to estimate logit models of this choice 
behavior, and then apply the estimated models 
or interpret the indications regarding 
sensitivities provided by the statistical 
estimates of the model parameter. The 
flexibility of the SP approach allows for 
complex data structures and survey techniques 
to be used.  But the resulting data may be such 
that, in the strictest sense, more is required 
than simply running the standard logit 
estimation process available “right out of the 
box.”   
 

Many researchers ignore the corrections, or 
‘refinements’, and assume that the simple 
basic (or even “naïve”) analysis is sufficient 

[1]. Even though accounting for these factors 
have gradually become more prevalent, there 
still exists a need for consistency in relevant 
notation and a better understanding of some of 
the technical issues and challenges in 
estimating logit models. 

This paper presents a case study where the 
data from an SP survey of mode choice are 
used to perform logit model estimations where 
the model specification is held constant while 
three potential refinements are applied 
individually and in combination.  These 
refinements include applying weights to the 
observations to account for differences across 
observations in the sampling rates, adjusting 
alternative specific constants to account for 
differences across alternatives in the 
probability of being included in the set of 
available alternatives which is apparent in the 
SP surveys, and applying a jackknife 
estimation technique to account for the 
correlations in the error structure expected 
with multiple observations from each 
respondent which is again apparent in the SP 
surveys.  

Each of these refinements is covered in the 
existing literature, with the issue and the 
correction set out in each case.  But they are 
each considered somewhat in isolation, using 
differing notation, and the material does not 
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seem to be readily accessible to many of those 
using SP data.  On this basis, it is felt that a 
paper is warranted presenting all three 
techniques in a consistent manner, covering 
theory and process, on a specific case study.  
The intention is to help disseminate greater 
understanding and capabilities in the use of 
the SP approach and the analysis of choice 
behavior using logit models more generally by 
showing improvements in model fit, t-
statistics, and t-ratio values.  
 

2   STUDY FRAMEWORK 
1. Review each adjustment separately and 

include past work covering the relevant 
topics; 

2. Describe the case study SP survey and the 
resulting data; 

3. Describe basic tree structure chosen for the 
data to be analyzed using ALOGIT 
estimation software; 

4. Present logit estimation results with 
different combinations of the refinements 
applied including: 

5. No adjustments; 
6. Adjustment to account for differential 

sampling rates across the population; 
7. Adjustment to account for using a sample 

with differences in the probability of being 
included in the choice set; 

8. Adjustment to account for the effects of a 
sample with more than one observation 
from individuals; 

9. All adjustments applied together; and 
10. Offer conclusions arising from the work. 
 

3   LOGISTIC MODELS 
Here a review of the literature on the three 
refinements along with presentation of 
selected material on each is done.  This is 
acheived using a consistent set of terms and 
variable definitions which can help the readers 
as the notations all differ in past work. A brief 
review of the standard logit model and the 
basic estimation process is also provided as a 
‘point of entry’ for some readers and in order 
to set out some of the consistent set of terms 
and variable definitions. Most of the literature 
have not used one or two of the adjustments. 
For example, in a work by [2] only the 
adjustment for differential sampling rates 
across the population and adjustment for 
multiple observations per individual has been 
considered. Other works by [3], [4], [5], and [6] 

have used the adjustment for multiple 
observations per individual or the adjustment 
to account for differential sampling rates 
across the population.  There are some 
research papers that have discussed 
adjustments discussed herein – in conjunction 
with revealed preference RP data – such as the 
work done by [7] and the work of [8]. It is 
notable to mention that correcting for sample 
weights is not necessarily tied to SP surveys 
and is implemented in commercial software 
packages such as ALOGIT and STATA. In 
some cases, especially for SP surveys, the 
target sample is obtained from a convenient 
sample (i.e. online panel) and quota sampling 
methods are used to match the population 
distribution for certain variables. This process 
minimizes the need for sample rate 
adjustments and has not been mentioned in 
some research papers.  

In practice, correcting for the frequency of 
alternatives is usually addressed by setting 
availability conditions of alternatives for each 
SP scenario. The estimation of the joint 
likelihood is necessary since the observations 
in that case are no longer independent while 
realizing that this adjustment affects the 
standard errors of the estimated coefficients. In 
addition, the scale parameter can be 
parametrized with individuals' attributes to 
capture heteroskedasticity in their 
responses. In a work by [9] a fuzzy logic 
approach to such refinements has been 
considered. Also, in a work by [10] a quantum 
approach has been discussed. However, the 
consolidated approach found in [11] is the 
most widely used in practice. Since the study 
herein is concerned with travel in the City of 
Calgary, in Alberta Canada, an example of an 
aggregate travel mode share chart is provided 
in Figure 1. 
 

3.1 Standard Logit Model and Basic 
Estimation Process 
In the well-known standard logit model, each 
individual, i , in a population, I , choosing one 

alternative a out of a set of alternatives 𝑎 ∈
 𝐴𝑖   , associates a utility value 𝑈𝑎𝑖 with each 
alternative and selects the alternative with the 
highest utility value.  

The utility value for each alternative is 
assumed to be influenced by the attributes of 
the alternative and the characteristics of the 
individual, with a linear-in-parameters 
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formulation and a randomly varying error 
component, as seen in Formula 1 and 2 found 
in work by [11]: 
 
U(a, i) = β0ai + ∑ βkaixkai + εaik∈ka

                    (1) 

            =  Vai + εai                                                (2) 
 
where: 
 
𝑉𝑎𝑖 = measurable conditioning component of 
utility individual i associates with alternative a 
𝛽𝑘𝑎𝑖 = utility function parameter, or 
‘sensitivity’, associated with measured 
attribute k for alternative a for individual i 
𝛽0𝑎𝑖 = utility function constant parameter, or 
‘constant’, associated with alternative a for 
individual i 
𝑘  = index for measured attributes 
𝑘𝑎 = set of measured attributes for alternative a 
𝜀𝑎𝑖 = randomly varying error component of 
utility of individual i associated with 
alternative a 

 

With the assumption that the 
ai

 

vary 

according to identical and independent 
standard Gumbel distributions across all 𝑎 ∈
 𝐴𝑖   where the Standard Gumbel distribution 
has the cumulative distribution function as 
seen in Formula 3 by [12]: 

 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) =  𝑒−𝑒𝜆(𝑥−𝜂)
                             (3)                                                            

where: 

𝜂   = the location parameter of the distribution, 
which is also the mode of the distribution 

λ = the scale parameter of the distribution 

Then the probability that a given alternative a* 
has the greatest utility and therefore is the one 
chosen by the individual i is as seen in 
Formula 4: 
 

𝑃(𝑎𝑖
∗) =

exp [𝜆𝑉𝑎𝑖
∗]

∑ exp [𝜆𝑉𝑎𝑖
]𝑎∈𝐴𝑖

                                                  

(4)                                                                                    
 
where: 
 
𝑉𝑎𝑖 = utility of a choice alternative 
λ =     the scale parameter of the distribution 

This is indeed all well-known. Given a 
dataset of observations of selections of 𝑎𝑖

∗from 
the set of alternatives 𝐴𝑖 for a set of individuals 
𝑖 ∈ 𝐼, a set of estimates for the utility function 
parameters factored by the dispersion 
parameter, including the constant 𝜆𝛽0𝑎 and the 
vector of sensitivities 𝜆𝛽𝑘𝑎∀𝑘 ∈ 𝑘𝑎, is 
established for each alternative for the set of 
individuals I using the likelihood function as 
seen in Formula 5: 
𝐿 = ∏ 𝑃(𝑎𝑖

∗) =𝑖∈𝐼

∏ (
exp [𝜆𝑉𝑎𝑖

∗]

∑ exp [𝜆𝑉𝑎𝑖
]𝑎∈𝐴𝑖

) =𝑖∈𝐼 ∏ (
exp [𝜆𝛽0𝑎∗+∑ 𝜆𝛽𝑘𝑎∗𝑥𝑘𝑎𝑖

∗]𝑘∈𝐾𝑎∗

∑ exp [𝜆𝛽0𝑎+∑ 𝜆𝛽𝑘𝑎𝑥𝑘𝑎]𝑘∈𝐾𝑎𝑎∈𝐴𝑖

)𝑖∈𝐼                 

             

                                                                                      
(5) 
 
and for computational tractability this is 
converted into log formulation as seen in 
Formula 6: 
 
𝐿𝐿 = ln(𝐿) =  ∑ ln (𝑃(𝑎𝑖

∗))𝑖∈𝐼 =

∑ ln (
exp [𝜆𝛽0𝑎∗+∑ 𝜆𝛽𝑘𝑎∗𝑥𝑘𝑎𝑖

∗]𝑘∈𝐾𝑎∗

∑ exp [𝜆𝛽0𝑎+∑ 𝜆𝛽𝑘𝑎𝑥𝑘𝑎]𝑘∈𝐾𝑎𝑎∈𝐴𝑖

)𝑖∈𝐼                           

(6) 
 
where: 
 
LL = log-likelihood 
 

The log-likelihood function needs to be 
maximized. Thus, must search for the values 
of 𝛽 that maximize the log-likelihood function. 
The set of utility function parameters to be 

estimated is represented by 𝛽̂ as seen in 
Formula 7: 
 

𝛽̂ = 𝑓(𝛽|Θ)                                                                  
(7)                                                                                                                             
 
where:  
 
Θ is the true value of the parameters.  
 

To find the maximum likelihood estimate of 
𝛽, we equate the derivative of the log-
likelihood function to zero and solve for 𝛽 
using methods such as Newton Raphson or 
Scoring found in a work by Maddala [13]. 
Maddala also explains that if Newton Raphson 
method is used, point estimates for these are 
found using Formula 8:  
 

𝛽1 = 𝛽0 + [𝐼(𝛽0)]−1𝑆(𝛽0) until |𝛽̂𝑛+1 − 𝛽̂𝑛| < 𝜖      

(8)                                                                 
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where: 
 
𝐼(𝛽) = the information matrix or the matrix of 
the second derivatives of the log-likelihood 
function for every individual observation i 
which is positive definite for each iteration as 
seen in Formula 9 and 10: 
 

𝐼(𝛽) = 𝐸 (−
𝜕2𝑙𝑜𝑔𝐿𝐿

𝜕𝛽𝜕𝛽́
)                                                   

(9)                                                                                                    

        = ∑
exp (𝛽́𝑥i)

[1+exp(𝛽́𝑥i)]2
𝑥𝑖

𝑛
𝑖=1 𝑥𝑖́                                     

(10)                                                                                                   
 
and 𝑆(𝛽) = the standard errors or the matrix of 
first derivatives of the log-likelihood function 
for every individual observation I as seen in 
Formula 11: 
 

𝑆(𝛽) = ∑
exp (𝛽́𝑥i)

1+exp (𝛽́𝑥i)
𝑥𝑖

𝑛
𝑖=1                                           

(11)                                                                                     
 

The standard errors for these estimates can 
be found by determining the co-variances 
using the inverse of the second derivatives 
matrix [𝐼(𝛽)]−1. This is the basic estimation 
process. The basic estimation process does not 
assume any variations existing in i's, a’s, or 
ia’s. The purpose of this paper is to show what 
will happen to the LL if there is in fact a 
variation in i’s, a’s, or ia’s. The following three 
sections respectively explain what happens to 
LL if such variations exist. Section 3.2 is 
regarding the variations in i’s. In basic 
estimations, it is assumed he survey sample 
observations could be used to draw 
conclusions about the entire population. 
However, this is not a valid assumption and 
the LL needs to be modified. Section 3.3 
addresses the variations in a’s if they exist. In 
the basic estimations, it is assumed that the 
alternatives, i.e. a’s, have equal probability of 
appearance in each game or observation.  

However, in many SP surveys only a sub-
sample of the alternatives is available to the 
respondents. For example, consider a SP study 
that the popularity of six different modes of 
travel are to be examined. However, the SP 
games are designed such that each respondent 
gets to choose five random cards in each game 
that could include all five alternatives or five 
different variations of only one of those 
modes. Thus, an uncertainty is introduced in 

the frequency of alternatives' availability. 
Section 3.4 explains possible variations in the 
ia’s where a correction method is explained for 
many SP cases where each individual plays the 
game more than once and thus a correlation 
exists among the responses and those 
responses cannot be treated independent and 
irrelevant observations.  
 

3.2 Adjustment Factor Against the Entire 
Population (Theoretical Concept) 
In order for the survey data to be an 
appropriate representative of a population, the 
results can be adjusted against the entire 
population using a weight factor [14]. The log 
likelihood for a weighted estimator is 
equivalent to that for the original estimator, 
except that each observation is weighted 
against the entire population. The following 
Formula 12 and 13 show how the likelihood 
function is weighted with expansion factor 
weights 𝜔. The formula is implemented in 
software using a weight factor 𝜔 for each 
observation [12]: 
 
𝐿𝐿 = ln(𝐿) =  ∑ 𝜔𝑖  ln (𝑃(𝑎𝑖

∗))𝑖∈𝐼 =

∑ 𝜔𝑖  ln (
exp [𝜆𝛽0𝑎∗+∑ 𝜆𝛽𝑘𝑎∗𝑥𝑘𝑎𝑖

∗]𝑘∈𝐾𝑎∗

∑ exp [𝜆𝛽0𝑎+∑ 𝜆𝛽𝑘𝑎𝑥𝑘𝑎]𝑘∈𝐾𝑎𝑎∈𝐴𝑖

)𝑖∈𝐼                    

(12) 
 

𝜔𝑖 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆ℎ𝑎𝑟𝑒

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆ℎ𝑎𝑟𝑒
                       (13)                                                                    

 
where: 
 
 𝜔𝑖 = the ratio of population shares for each 
observation. This adjustment will be called 
weight adjustment throughout this text.  
 

3.3 Adjustment for Uncertainty in 
Frequency of Alternatives' Availability 
(Theoretical Concept) 
In the SP survey of this project we present the 
interviewees with five individual cards during 
each observation. There are six alternatives in 
total. Two of the cards are bus alternatives at 
all times and the remaining three could be any 
random combination of the modes taxi, ride 
with friend already driving, ride with friend 
not already driving, ride with relation already 
driving, and ride with relation not already 
driving. There is an uncertainty in the 
availability of alternatives in each observation. 
One of the underlying assumptions in 
maximum likelihood estimation process is the 
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equal probability of appearance of all the 
alternatives at all times in which case the 
following Formula 14 holds [15]: 
 

𝑃(𝑖∗) =  
𝑒[𝑉∗+ 𝜀∗]

∑ 𝑒[𝑉𝑖+ 𝜀𝑖]
𝑖∈𝐼

.                                                    

(14)                                                                                                      
 

This equation is valid under the assumption 
that the entire set of 𝑉𝑖 is always available for 
all i. However, there is a need to correct for 
some of the alternatives being unavailable in 
some cases. To do so we need to include an 
adjustment factor for all alternatives in the 
utility functions. More information regarding 
this adjustment can be found in [16]. In the 
case study herein, we can use the probability 
of appearance of a card in a draw and calculate 
the correction factor based on that probability. 
The following section illustrates the procedure 
to calculate such correction factor for inclusion 
in the utility functions: 
 
where: 
 

Ci  = unique alternatives from the full set 

CDi   = unique alternatives from the 

sample 

 iq  = selection probability (prob. to be 

drawn) 

in  = selection frequency in the sample 

N = sample size 

iV  = utility of a choice alternative 

 iP  = choice probability 

 
The choice frequencies of each of the 
alternatives are summed over the sample size 
as seen in Formula 15. 
 
∑ 𝑛𝑖𝑖∈𝐷 = 𝑁.                                                               
(15)                                                                                                            
 
In Sample D, for all alternatives from 1 to N, 
the choice probability with sampling 
correction factors is seen in Formula 16: 
 

𝑃(𝑖) =
exp [𝑉𝑖+ln(

𝑛𝑖
𝑁 ×𝑞(𝑖)

)]

∑ exp [𝑉𝑗+ln(
𝑛𝑗

𝑁 ×𝑞(𝑗)
)𝑗∈𝐷

=
(

𝑛𝑖
𝑁 ×𝑞(𝑖)

)×exp (𝑉𝑖)

∑ [(
𝑛𝑖

𝑁 ×𝑞(𝑗)
)×exp(𝑉𝑗)]𝑗∈𝐷

  

(16)                                           
 

with cancellation of N which is a fixed 

number we have Formula 17: 

 

𝑃(𝑖) =  
exp [𝑉𝑖+ln(

𝑛𝑖
𝑞(𝑖)

)]

∑ exp [𝑉𝑗+ln(
𝑛𝑗

𝑞(𝑗)
)𝑗∈𝐷

=
(

𝑛𝑖
𝑞(𝑖)

)×exp (𝑉𝑖)

∑ [(
𝑛𝑖

𝑞(𝑗)
)×exp(𝑉𝑗)]𝑗∈𝐷

.       

(17)                                       
 

The utility correction factor in Formula 16 is 

assumed to be ln (
𝑛𝑖

𝑁 × 𝑞(𝑖)
); However, the 

correction factor assumed in Formula 17 is 

ln (
𝑛𝑖

 𝑞(𝑖)
). The results of both formulas are the 

same and thus the simple form of correction 
factor presented in Formula 17 is used. In the 
case where a log-sum of this selection model 
needs to be applied in an upper level choice 
model, then the log-sum needs to be calculated 
as Formula 17 denominator as seen in Formula 
18: 
 

𝐿𝐿1 = 𝑙𝑛 {∑ exp [𝑉𝑗 + ln (
𝑛𝑗

𝑁 ×𝑞(𝑗)
)𝑗∈𝐷 ]} =

ln (∑ (
𝑛𝑖

𝑁 ×𝑞(𝑗)
)𝑗∈𝐷 × exp (𝑉𝑗))                                   

(18) 
 

In the case that Formula 17 is used for the 
choice probability correction, then the log-sum 
in Formula 19 would be:  

𝐿𝐿2 = 𝑙𝑛 {∑ exp [𝑉𝑗 + ln (
𝑛𝑗

𝑞(𝑗)
)𝑗∈𝐷 ]} =

ln (∑ (
𝑛𝑖

𝑞(𝑗)
)𝑗∈𝐷 × exp (𝑉𝑗)).                                                      

(19) 
 

Now log-sum Formula 19 that was 
calculated using Formula 17 needs to be scaled 
in order to reproduce the value of Formula 18 
which was calculated using formula 16 as can 
be seen in Formula 20: 
 
𝐿𝐿2 =  𝐿𝐿1 − ln (𝑁).                                       
(20)                                                                         
                                      

Therefore, the two ways to apply 
corrections for choice model and log-sum 
calculations are: 

1. Using Formula 16 for utility correction 
factors, then using the log-sum 
directly from the denominator of the 
Formula 16 

2. Using Formula 17 for utility correction 
factors, then scaling the log-sum from 
the denominator by Formula 20 
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In case we assume the entire set of choice 
frequencies are one meaning that (𝑛𝑗 = 1) and 

with all selection probabilities being equal 

𝑞(𝑗) = 𝑞 =  
1

𝑅
, the Formula 18 will simply be:  

 

𝐿𝐿1 = 𝑙𝑛 (∑ (
𝑅

𝑁
)𝑗∈𝐷 × exp (𝑉𝑗)) =

ln(∑ exp (𝑉𝑗)𝑗∈𝐷 ) + ln (
𝑅

𝑁
)                                                       

(21) 
 
where: 
 
R        =    size of the full set  
N        =    sample size 
𝑉𝑗        =    utility of a choice alternative 

 
Formula 21 can be used for basic 

estimations when the original log-sum was 
calculated without correction factors and 
random sampling without replacement. Then 
the log-sum needs an expansion factor equal to 
the full set size divided by the sample size 
which is called frequency adjustment 
hereafter.  
 

3.4 Adjusting for Multiple Repeated 
Observations (Theoretical Concept) 
In many surveys, where possible, multiple 
observations are obtained from each 
respondent in an attempt to get more 
information at lower marginal cost.  This is 
especially true with SP experiments, where it 
would seem that the flexibility of the process 
and the relative ease with which different 
hypothetical situations can be described 
invites multiple observations [17].  

In the typical SP survey, the respondent is 
asked to participate in a game-like process, 
where the same choice situation is considered 
multiple times, each time with a different set 
of alternatives to be ranked in order of 
preference [18]. Asking one person to play 10 
games is not the same as asking 10 people to 
each play one game.  The nature of the 
information obtained will be different.   

In the first case, there is more information 
about one person and in the second case there 
is information about more people.  In the first 
case, because it is the same person, all other 
things being equal, the displayed behavior will 
tend to be much more similar and thus the 
data more correlated.  Intuitively, there will be 
less variation and thus less information about 
the relevant choice behavior for the population 

from a sample of 10 observations all from the 
same person than from a sample of 10 
observations from each of 10 different people.  

In the development of the standard single-
level logit model and the estimation processes 
that work with it, it is assumed that the errors 
in the utility values are identically and 
independently distributed across all the 
alternatives for all the observations. This 
assumption may be reasonable when there is 
just one observation from each respondent, but 
it seems much less reasonable when there are 
multiple observations from each respondent.  

Clearly this cannot be valid in the case 
where there are multiple observations per 
respondent. A well-recognized study [19] has 
clearly explained about an SP experiment with 
repeated observations in which the 
respondents are offered a choice between 
coach and train. Attributes such as "In-Vehicle-
Time" and "Wait-Time" were considered for 
each mode of travel.  

The respondents were asked to go through 
the survey more than one time which can 
create an auto-correlation problem in the data 
collected as collecting say six responses from 
one person is not equal to collecting one 
response from six individuals [17]. In the case 
of the SP survey here in, we ask the 
respondents to repeat the survey six times in 
total. This implies that there are correlations 
among the six different sets of responses 
collected from the interviewees. Thus, we can 
no longer assume that all our observations are 
identically and independently distributed.  

This is important because there are some 
fundamental assumptions in the maximum 
likelihood estimation process, which requires 
the IIA property to hold at all times. Thus, the 
error terms of the utility functions which were 
assumed to be independently and identically 
distributed, need to be corrected by a factor 
that accounts for the interdependency of 
observations collected from each interviewee.  

One method is to use the Jackknife estimate 
of standard, introduced by Tukey (1958). 
Jackknife, described by [20] gives 
nonparametric estimation of variances. The 
Jackknife variance described by [21] can be 
estimated in five steps: 
 
1. Let  𝜑 represent the sample, which 

consists of N observations. Partition 𝜑 
as 𝜑 = { 𝜑1,  𝜑2, … ,  𝜑𝐺} where G is the 
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number of groups, each of size m, 
such that 𝐺 ×  𝑚 = 𝑁. 

 

2. Let 𝛽̂ represent the estimator obtained 

using all the data (i.e. j

 

). Let 𝛽̂−𝑖 

represent the estimator obtained by 

omitting
i , for i = 1, 2..., G, then 

 
3. Calculate the pseudo values as seen in 

Formula 22: 
 

𝛽𝑖
∗ = 𝐺𝛽̂ − (𝐺 − 1)𝛽̂−𝑖 , for i = 1, 2, …, 

G.                                                                     
 
                                                                                    
(22) 
               these 𝛽𝑖

∗can be treated like G 
observations 

              of 𝛽̂ (though not independent).  
4. Calculate the sample average of the 

pseudo values as in Formula 23:  

𝛽̅∗ =
1

𝐺
∑ 𝛽𝑖

∗𝐺
𝑖=1 .                                            

(23)                                                                                   
 

5. Estimate the variance of ̂  as seen in 

Formula 24: 
 

𝑉𝑎𝑟 (𝛽̂) =  
1

(𝐺−1)𝐺
∑ (𝛽𝑖

∗𝐺
𝑖=1 − 𝛽̅∗)(𝛽𝑖

∗ −

𝛽̅∗)′.             
                                                                       
(24) 

 
For each coefficient k in the original model 

the correct t-statistic, based on the jackknife 
estimates of the variance, are calculated as 
seen in Formula 25: 

𝛽̂𝑘

√𝑉𝑎𝑟(𝛽̂)𝑘𝑘

.                                                                     

(25)                                                                                                                     
 

4 Method 
The data used for this study is collected from a 
SP survey where respondents are presented 
with a deck of cards on which different modes 
of travel along with their specific attributes are 
printed. Each respondent will draw five 
random cards from a deck of such cards and is 
asked to rank and rate the cards in order of 
preference with each card representing a 
specific mode. The survey design was based 
on a hypothetical scenario in which the 
respondents were to travel to a meeting while 

they did not have the option to drive alone. 
The respondents had to choose among 
different alternative travel options namely bus, 
taxi, or ride as a passenger with a friend or a 
relative. Six different scenarios printed on 
cards (1008 cards in total) were Bus (576 
cards), Taxi (96 cards), Ride with a friend who 
is already driving (112 cards), Ride with a 
friend who is not already driving (56 cards), 
Ride with a family member living in the 
household who is already driving (112 cards), 
and Ride with a family member living in the 
household who is not already driving (56 
cards). For each scenario, there are different 
attributes selected. Each attribute has different 
states, levels, and values. The values will be 
randomly chosen for different cards which 
yield to a pile of 300 cards with each card 
having different attribute values than the 
other. See Figure 2 for sample survey cards. 
The process of ranking and rating five cards is 
repeated six times for each respondent and the 
results are recorded. The selection of mode 
attributes has been based on the review of 
literature. The attributes are considered to be 
some of the major attributes of a travel mode 
that could influence one's decision on selection 
of that mode. Some of the alternative (mode) 
specific attributes are listed in Table 1. A total 
of 717 suitable interviews were selected and 
4212 runs of ordering and rating cards will be 
used in the analyzing of factors. The utility 
function for each mode of travel is then 
defined as a combination of the attributes on 
the cards and their respective coefficients. The 
Formula 26 below is a sample utility function 
that will be used in the estimation process: 
 

𝑈𝐵𝑢𝑠 =  [𝐵𝑊𝑎𝑙𝑘𝑜𝑟𝑖𝑔 × 𝑥𝐵𝑊𝑎𝑙𝑘𝑜𝑟𝑖𝑔]                          

(26)                                                                                                 
           + [𝐵𝑊𝑎𝑙𝑘𝐷𝑒𝑠𝑡 × 𝑥𝐵𝑊𝑎𝑙𝑘𝐷𝑒𝑠𝑡] 
          + [𝐵𝑆𝑐ℎ𝑒𝑀𝑖𝑠 × 𝑥𝐵𝑆𝑐ℎ𝑒𝑀𝑖𝑠] 
          + [𝐵𝑅𝑖𝑑𝑒 × 𝑥𝐵𝑅𝑖𝑑𝑒] 
           + [𝐵𝐹𝑎𝑟𝑒 × 𝑥𝐵𝐹𝑎𝑟𝑒] 
 

Figure 3 is a graphical representation of the 
resulting sample's age and gender distribution 
with the left column representing males and 
the right column representing females. All 717 
interviews had gender information recorded. 
425 (59.27%) male and 292 (40.73%) female 
respondents participated in the survey. The 
distribution of income for the obtained sample 
is shown in Figure 4. 
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5 Results 
The no tree structure was used as a general 
case for the study herein which can be 
represented by Figure 5. It means that it was 
assumed that all the six modes of travel have 
equal elasticity. Each stem of this structure is 
connected to a common "traveller" or "root" 
point which means that upon any changes in 
the availability of one mode, all the other 
modes will be affected equally. However, this 
is not always the case especially when there 
are alternatives that are more similar such as 
the friends or HH relation alternatives. The 
next sections describe the application of the 
three adjustments on the raw data considering 
no tree structure along with one case where a 
full adjusted nested tree structure as seen in 
Figure 6 is chosen. The impact of applying 
each of those adjustments on the coefficient 
estimates have been summarized in Table 2 for 
convenient comparisons. The t-statistic values 
for specific pairs of coefficients after the 
application of adjustment factors have been 
shown in Tables 3 to 7.  
 

5.1 Results of Naive Estimations without 
any Adjustments (Empirical Example) 
The Original Results column of Table 2 
represents the estimated values of the 
coefficients and their t-ratios for the case 
where no adjustment was applied to the 
original data. Table 3 illustrates the values of t-
statistics for different pairs of coefficients with 
no adjustments.  
 

5.2 Adjustment Factor Against the Entire 
Population (Empirical Example) 
The experimental results obtained from the 
surveys only represent the survey sample. In 
order to be able to draw conclusions regarding 
a city or a region, these data need to be 
extrapolated to a larger population [14]. 

This is achievable by determining the age, 
income, and gender category of each 
respondent and then using the statistics tables 
provided by Statistics Canada found in [22], 
[23], [24], and [25] to calculate an expansion 
factor for each observation [26]. One method to 
calculate the expansion factor is by applying 
an Iterative Proportional Fitting IPF method 
[27]. See the weight section in Tables 2 and 4. 
 

5.3 Adjustment Factor for Uncertainty in 
Frequency of Alternatives' Availability 
(Empirical Example) 
In a work done by [16], the process of 
adjusting for uncertainty in frequency of 
alternatives' availability is referred to as 
limiting the number of alternatives. See Table 2 
and 5 frequency section. 
 

5.4 Adjusting for Multiple Repeated 
Observations per respondent (Empirical 
Example) 
If the problem of autocorrelation is ignored, 
the t-ratios calculated for estimated parameters 
in the model tend to be larger than what they 
are [1]. Thus, it cannot be concluded with 
certainty that our parameter estimations are 
truly statistically significant in cases where the 
actual value of t-ratios is less than the 2.0 
acceptance limit. In this project, the Jackknife 
process was undertaken using the latest 
version of the estimation software ALOGIT 
4.2.  See the Jackknife section presented in both 
Table 2 and Table 6 for results of this 
adjustment. 
 

5.5 Results of Application of All Three 
Adjustments with no Tree 
Table 7 represents the t-statistics values for 
pairs of coefficients after the application of all 
three adjustment factors on the original data 
using a no nested tree as seen in Figure 5. 
 

5.6 Results of Application of All Three 
Adjustments with a Full Adjusted Tree 
Table 8 represents the t-statistics values for 
pairs of coefficients after the application of all 
three adjustment factors on the original data 
using a full adjusted nested tree structure as 
seen in Figure 6.  
 

6   Analysis 
The following sections summarize the results 
of application of adjustments. First, changes in 
the signs of the estimated parameters due to 
the adjustments have been discussed. The 
values of the t-ratios calculated by the logit 
software is then analyzed.  

Next, changes in the values of the estimated 
parameters have been investigated. Finally, the 
values of the t-statistics between different pairs 
of parameters before and after the adjustments 
have been discussed.  
 

6.1 Estimated Parameter Sign Changes 
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As it was seen in Table 2, the signs for the 
estimated parameters before and after 
adjustments stays the same for all parameters 
except for two constants with the first being: 
 
RConstant which is negative in two occasions 
(weight and Jackknife/weight shown in boxes 
in Table 9 and positive in all other cases). 
 
FConstant: negative in three cases (original, 
Jackknife, and weight) and positive in all other 
cases as seen in Table 10. 
 

6.2 Changes in Absolute Value of T-
Ratios 
The values of the t-ratios for the original case 
and the all factors case have been compared 
here. In most cases, there is a drop in the t-
ratio values most likely due the Jackknife 
adjustments. The Jackknife process as 
explained in Section 3.4 reduces the errors in 
estimates and thus a reduction in the t-ratios is 
expected.  In all parameters except a few 
explained here, a t-ratio drop is visible. 
However, the drop is not big enough to make 
the t-ratio statistically insignificant. Table 11 
shows the results for all alternatives with the 
following observations: 
 
1. RConstant t-ratio which is non-significant 

except whenever frequency adjustment is 
used. 

2. FConstant t-ratio: t-ratio significant in the 
original case and stays significant for all 
other cases except in the weight case as 
well as the Jackknife plus weight case. 

3. DConstant t-ratio: t-ratio significant and 
very high in the original case and t-ratio 
dropped to be marginally significant after 
all three adjustments were applied. 

4. HConstant t-ratio: greater than 2.0 in one 
case only (All Factors) and less than 2.0 in 
all other cases. 

5. TRide parameter t-ratio: insignificant 
whenever Jackknife and weight are both 
applied and significant in all other cases. 

 

6.3 Estimated Parameter Values  
A look at Table 2 as was shown previously 
indicates that the estimated values of the 
coefficients in all cases have not been subject to 
a major change after applying different 
adjustments. The values for the parameters in 
the base case have been compared the values 

of the parameters obtained after each 
adjustment in Table 12. This has been done by 
calculating the t-statistics for the changes in 
parameter values. The values of estimated 
parameters are very close in almost all cases 
and the t-statistics of the differences are not 
statistically significant. The results show that 
in the case of the Jackknife corrections no 
difference is seen in the value of coefficient 
estimates as expected and explained by [15]. 
Although the results are very similar, but they 
are in fact different after application of each 
adjustment factor. Thus, one might be 
interested to try applying these adjustment 
factors for different projects with different data 
sets to ensure that the difference in the 
estimated values are not statistically 
significant. 
 

6.4 Estimated Constant Values  
Unlike parameters, the estimated values of the 
constants have had a significant change in 
almost all adjustment cases except for the 
Jackknife case. To figure out if those changes 
are statistically significant, Table 13 is 
provided which represents the t-statistic 
values calculated for the changes in the values 
of the constants after applying each 
adjustment. To do this, the values for the 
constants in the base case have been compared 
to the values of the constants obtained after 
application of different adjustments. The 
changes in the values of the constants are 
mostly statistically significant at 95% 
confidence interval in the cases of weight and 
Jackknife plus weight (except for FConstant). 
This might be of interest for projects where 
decisions are made based upon the values of 
the constants. 
 

6.5 T-Statistic Values Between Pairs of 
Parameters 
This section discusses the results shown in 
Tables 3 through 7. In those tables a t-statistic 
value was calculated for different pairs of 
parameters. Some changes could be seen in the 
values of t-statistics after each adjustment was 
applied on the original data. 
1. Base Case vs Weighted Data: 

In Table 4 there were nine pairs of 
parameters that the difference in their 
values were found to be insignificant 
while thought to be significant if only the 
original results from Table 3 had been 
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used for analysis. On the other hand, 
Table 4 contains four pairs of parameters 
with statistically significant differences in 
their values that were previously found to 
be insignificant in the original case. In 
utility functions when two variables are 
NOT statistically significant from each 
other they need to be combined and better 
not be kept as two separate variables in 
the. If only the original results were used, 
some of these pairs of parameters would 
have been kept separate or combined 
which could influence the results of the 
entire estimations. 

 
2. Base Case vs. Frequency Adjustment 

Factor Results: The results after the 
frequency adjustments in Table 4 show 
that the values of all the parameters except 
for the constants are the same as the base 
case. The reason could be due to the fact 
that for the specific data set used in this 
study the frequency adjustment factors 
calculated to be added to the utility 
functions were very small mostly below 
1.5. After applying Frequency adjustments 
which accounts for this inequality in the 
probability of alternatives' availability, the 
values of the alternative specific constants 
have all changed to a positive value 
meaning they are greater than the 
reference point zero for BConstant. This 
shows that the bias has been removed and 
all the other alternatives have higher 
desirability compared to the Bus 
alternative. 

 
3. Base Case vs. Multiple Repeated 

Observations: The significance of t-
statistics before and after Jackknife 
adjustments remains the same for almost 
all pairs of parameters as seen in Table 6. 
This is expected as Jackknife process will 
affect the t-ratios and errors in estimations 
and not the values of the parameter.  
 

4. Base Case vs. All Adjustment: 
Table 7 shows that many pair of 
parameters have statistically insignificant 
differences in values after all three 
adjustments have been applied. However, 
many of the t-statistics are marginally 
significant which could be due to the noise 
in the Jackknife process. Thus, they might 

be still significant but as the two other 
adjustments (weight and frequency) are 
also used, then it is expected to see such 
discrepancies. If the estimations are done 
for many times and the average t-statistics 
are used, these marginally significant t-
statistics might show to be significant. 
 

6.6 The Value of Time (VOT) 
The VOTs calculated as seen in Table 14 for the 
bus alternative is reasonably close to the 
previous findings in the literature which was 
around 4.0 dollar per hour [28]. The VOTs 
calculated using DRide and HRide are close to 
the value of $18 found previously for the City 
of Calgary [26]. It can be seen that the VOTs 
found using the RRide and FRide are at least 
half the values calculated using DRide and 
HRide. This is another indication of the the 
added discomfort felt when extra travel time 
are imposed on the driver. Large t-ratios for 
the extra ride times and the schedule mismatch 
between the driver and the passenger for the R 
and F modes (RRideExtra, FRideExtra, 
RSchedMisF, and FSchedMisR) can be 
observed.  

The estimated values of these factors might 
be subject to some influences and the overall 
results might be mixed. However, it can be 
concluded that the parameters that represent 
the sensitivity of the traveler to the extra ride 
time imposed on a driver as well as the 
schedule mismatch of the driver play 
important roles in decision to ask for a ride. 
The values show that people feel the 
discomfort when they are imposing a favour 
on someone. This is a direct empirical evidence 
of altruism or maybe it's the discomfort that 
they are seeking to avoid. The story behind not 
deciding to phone someone to ask for a ride is 
perhaps not because the traveller is feeling the 
pain of his or her own time but because he/she 
is feeling the awkwardness concerning the 
driver's time. It means that the decision to 
rideshare is an internal process. What is clear 
from the results here is that there is increasing 
disutility associated with the driver's extra 
time and this could be substantial enough to 
tip the balance away from ride sharing. 
 

6.7 Adjusted Nested Tree Structure 
All of the above results were with respect to a 
basic non-nested tree structure. Since ALOGIT 
was used herein, then some adjustments 
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regarding the nesting parameters needs to be 
considered when there is a nesting structure 
with different levels and branches [29]. Table 8 
provided an example representing the t-
statistics values with all three SP adjustments 
used under an adjusted nested tree structure. 
Even though the results show almost no 
differences, in certain adjusted nesting 
structures as seen in [30], the application of all 
three SP adjustments explained here in 
Sections 3.2 to 3.4, revealed to have statistically 
significant impacts on the value of t-statistics 
and t-ratios while improving the fit of the 
model. In practical cases this outcome can act 
as a turning point in policy and decision-
making processes. This is because if policy 
decisions are to be based on the results of such 
studies, attention needs to be paid to the types 
of the tree structures used in the study. 
 

7    CONCLUSIONS 
The weight correction factor did not change 
the value of coefficients or constants by a 
significant amount. However, many large t-
statistic values between pairs of parameters in 
the base case showed a significant decrease 
after the weight adjustments were applied.  
The adjustment for uncertainty in frequency of 
alternatives' availability resulted in increases 
in the values of some of the constants and 
therefore their sign changed from negative to 
positive. Those cases where related to the 
alternatives that had lower number of cards 
compared to other alternatives in the full set of 
cards. The Jackknife process here showed to 
have no effect on the estimated values of 
parameters, the constants, nor the t-ratios.  

However, depending on the nature of the 
data, some projects might be faced with a 
situation where their t-ratio values drop below 
2.0 and forced to reject their hypothesis to use 
the corresponding coefficients in their model 
[18]. There were no statistically significant 
changes seen in the estimated values of 
parameters after any of the adjustment factors 
were applied. In almost all cases, the changes 
in the values of the constants found to be 
statistically significant at 95% confidence 
interval after application of the weight as well 
as the Jackknife/ weight adjustments. Some of 
the t-statistics between different pairs of 
parameters, turned out to become statistically 
significant (or vice versa) after the weight as 
well as the frequency adjustments. Most t-

ratios with a very large value in the original 
case showed a decrease to a reasonable value 
after the Jackknife process. 

Here, using all three adjustments separately 
or in combination did not result in statistically 
significant changes in the value of parameters, 
t-ratios, nor the fit of the model using a basic 
tree structure. However, even though the 
adjustments, while necessary, didn't change 
the empirical results, caution should be 
exercised in their interpretation and the 
conclusions may not be generalized. This is 
because, in another work by the same first 
author, using the same data set, when different 
nesting structures among groups of 
alternatives were used (Hassanvand, 2012), the 
final results were found to show statistically 
significant differences.  

The said work showed how under some 
specific adjusted nested tree structures, the 
absence of one or two of the adjustments 
explained herein had statistically significant 
effects on the t-statistics results and the 
statistical fit of the model. Thus, under certain 
nesting structures and different data sets, 
leaving out even one of the adjustments 
discussed herein can result in less accurate 
outcomes and researchers should expect 
sizable differences as a result of the 
adjustments which would require testing 
various nesting structures. Considering 
various cases and nesting structures then 
becomes of utmost importance and gains 
practical significance to policy makers if 
decisions are to be made based on the 
conclusions drawn from SP studies. Overall in 
the work herein most of the statistically 
significant changes have been seen in the 
values of the constants. This might be of 
interest for policy makers as many 
transportation related decisions are based on 
the values of the constants. Thus, these 
adjustments could be useful for projects that 
their results are important for policy makers.  

In particular, the effect of frequency 
adjustments on constants might be important 
in some practical planning projects. When 
considering the Jackknife process, there is a 
possibility of a drop in the value of the 
parameters' t-ratios resulting in those 
parameters to be viewed as non-significance. 
In such a case a change in utility functions 
might be needed. In general, there are some 
difficulties when undertaking research such as 
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one described herein. One is that the 
calculation of factors in this project was done 
using Excel® spreadsheets. In some cases, use 
of macros saved a lot of time in the calculation 
process.  

Also, in the process of literature review, 
there were not many studies that focused on 
the nature and use of all three adjustments 
together when SP data is used. This paper has 
done a detailed look at SP data’s possible 
limitations and different avenues regarding 
using naïve analysis were investigated here. 
This work is a review of the collection of 
adjustment factors for use by those who are 
dealing with SP data. Instead of Jackknife, one 
could use the extended sandwich estimator 
method for more accurate results [15]. Also, 
when applying all adjustments, it is useful to 
do the estimations few times to realize of any 
consistencies are seen in the final results. This 
will ensure that the effect of randomness in the 
Jackknife on final results is not ignored. 
 

8 ACKNOWLEDGEMENTS  
Dr. John Bowman and professor Andrew 
Daly's insight, guidance, and help through 
electronic email messaging regarding concepts 
included in this paper is highly appreciated.  
 

9 REFERENCES 
[1] Bates, J.J. 1988. Economic Issues in Stated 
Preference Analysis. Journal of Transport 
Economics and Policy, 22(1), 9–69. 
 
[2] Ghaffari, M. 2017. Factors Influencing the 
Use of Autonomous and Shared Autonomous 
Vehicles. University of Calgary, Calgary, 
Alberta CANADA (Master's thesis). 
 
[3] Wardman, M. and Bristow, A. L. 2004. 
Traffic related noise and air quality valuations: 
evidence from stated preference and 
residential choice models. Transportation 
research D 9: 1–27. 
 
[4] Wardman, M., Bristow, A. L., and Arsenio, 
E. 2005. Applying Stated Preference Methods 
to the Valuation of Noise: Some Lessons to 
Date. Paper prepared for the Congress and 
Exposition on Noise Control Engineering, 7-10 
August, Rio de Janeiro, Brazil.  
 
[5] Bai, Y. 2014. Modelling Riders' Behavioural 
Responses to Real-Time Information at LRT 

Stations in Calgary, Alberta. University of 
Calgary, Calgary, Alberta CANADA (Master's 
thesis). 
 
[6] Hossain, M. S. 2011. A Stated Preference 
Examination of Sensitivities to Transit-Related 
Walking and Waiting in Calgary. University of 
Calgary, Calgary, Alberta CANADA (Master's 
thesis). 
 
[7] Cherchi, E., Ortúzar, J. de D. 2011. On the 
use of mixed RP/SP models in prediction: 
accounting for random taste heterogeneity. 
Transp. Sci. 45(1), 98–108. 
 
[8] Bliemer, M. C. J., Rose, J. M., & Chorus, C. 
G. 2017. Detecting dominance in stated choice 
data and accounting for dominance-based 
scale differences in logit models. 
Transportation Research. Part B: 
Methodological, 102, 83-104. 
https://doi.org/10.1016/j.trb.2017.05.005. 
 
[9] Henn, V., Ottomanelli, M. 2005. Handling 
Uncertainty in route choice models: From 
probabilistic to possibilistic approaches. 
European Journal of Operational Research 175: 
pp. 1526- 1538 
 
[10] Vitetta A., 2016. A quantum utility model 
for route choice in transport systems. Travel 
Behaviour and Society, N. 3, Pag. 29–37 
 
[11] Ben-Akiva, M. and S.R. Lerman. 1985. 
Discrete Choice Analysis: Theory and 
Application to Travel Demand, Cambridge, 
MA: MIT Press. 
 
[12] Garrow, L. A. 2010. Discrete choice 
modelling and air travel demand: Theory and 
applications. England: Ashgate Publishing 
Limited. 
 
[13] Maddala, G. S. 1983. Limited-dependent 
and qualitative variables in econometrics. 
Cambridge Uni Press. 
 
[14] Bhat, C.R., Schofer, J.L., Koppelman, F.S. 
and Bautch, R.C. 1993. Driver Recruitability for 
Advanced Traveler Information System 
Experiments. Transportation Research Part C, 
1, 4, 265-274. 
 

IJSER

http://www.ijser.org/
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/driver_recruitability.html
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/driver_recruitability.html
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/driver_recruitability.html


International Journal of Scientific & Engineering Research Volume 11, Issue 6, June 2020 

ISSN 2229-5518 

IJSER © 2020 

http://www.ijser.org 

227 

[15] Daly, A. and Hess, S. 2010. Simple 
Approaches for Random Utility Modelling 
with Panel data. presented at the 12th WCTR, 
Lisbon, Portugal. 
 
[16] McFadden, D. 1984. Econometric analysis 
of qualitative response models. In Griliches, Z. 
& Intriligator, M. eds., Handbook of 
Econometrics, North Holland, 1385–1457. 
 
[17] Ouwersloot, H. and Rietveld, P. 1996. 
Stated choice experiments with repeated 
observations, Journal of Transportation 
Economics and Policy, 30, 203–212. 
 
[18] Hess, S. and Rose, J.M. 2006. Effects of 
distributional assumptions on conditional 
estimates from Mixed Logit models, ETH 
Working Paper, Arbeitsberichte Verkehrs- und 
Raumplanung, 423, IVT, ETH Zurich. 
 
[19] Wardman, M. 1988. A Comparison of 
Revealed Preference and Stated Preference 
Models of Travel Behaviour. Journal of 
Transport Economics and Policy, 22(1), 71-91. 
 
[20] Miller, R. 1974. The Jackknife: A Review. 
Biometrica, 61, 1-14. 
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Figure 2: Sample Survey Cards 

 

 

Figure 3: Distribution of Age and Gender 
(male: left column, female: right column) 
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Figure 4: Income Distribution of Sample 

 
 
 

 
 

 
 
 

 
            Figure 6: A Full Adjusted Nested Tree 

 
 
 
 
 
Table 1: Selected Modes of Travel for Surveys                           

 
 
Table 2: Estimation Results with All Three 
Adjustments, Basic Non-Nested Tree 

 
 
Table 3: T-statistics for the Coefficients Using 
Original Data with no Adjustments, Basic Tree 

0
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Mode(abbreviation) Parameters  Description of Parameter 

1 - BUS (B) 

 

BWalkorig 

Bus walk distance from origin to boarding 

stop 

BRide Bus ride time 

BFare Bus fare 

BWalkDest 

Bus walk distance from alighting stop to 

destination 

BScheMis Bus schedule mismatch 

  2 - Taxi (T) 

 TRide Taxi ride time 

TFare Taxi fare 

TSchedMis Taxi schedule mismatch 

  3 - Ride with friend already driving (R) 

 RRideExtraF R Mode extra ride time for friend 

RRide R Mode ride time 

RSchedMisF R Mode schedule mismatch for friend 

RSchedMis R Mode schedule mismatch  

  4 - Ride with friend NOT already driving 

(D) 

 DRide D Mode ride time 

DSchedMis D Mode schedule mismatch 

  5 - Ride with HH relation already driving 

(F) 

 FRideExtraR F Mode extra ride time for HH relation 

FRide F Mode ride time 

FSchedMisR F Mode schedule mismatch for HH relation 

FSchedMis F Mode schedule mismatch 

  6 - Ride with HH relation NOT already 

driving (H) 

 HRide H Mode ride time 

HSchedMis H Mode schedule mismatch 

 1 

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Bus (B) SchedMis -0.0301 34.8 -0.0300 19.8 -0.0292 34.1 -0.0301 34.8 -0.0300 19.8 -0.0289 8.6 -0.0292 34.1 -0.0289 8.6

BWalkOrig -0.1112 16.6 -0.1110 13.0 -0.1133 16.9 -0.1112 16.6 -0.1110 13.0 -0.1131 9.5 -0.1133 16.9 -0.1131 9.5

BRide -0.0202 13.8 -0.0201 15.5 -0.0189 13.0 -0.0202 13.8 -0.0201 15.5 -0.0187 9.6 -0.0189 13.0 -0.0187 9.6

BFare -0.1626 8.9 -0.1624 8.2 -0.1037 5.6 -0.1626 8.9 -0.1624 8.2 -0.1014 2.7 -0.1037 5.6 -0.1014 2.7

BWalkDest -0.1130 18.8 -0.1129 15.8 -0.1324 21.9 -0.1130 18.8 -0.1129 15.8 -0.1325 9.0 -0.1324 21.9 -0.1325 9.0

BConstant 0.0000 0.0 0.0000 - 0.0000 - 0.0000 0.0 0.0000 - 0.0000 - 0.0000 0.0 0.0000 -

Bcorr 0.0000 0.0 0.0000 - 0.0000 - 0.0000 0.0 0.0000 - 0.0000 - 0.0000 0.0 0.0000 -

taxi (T) TRide -0.0163 5.7 -0.0162 5.7 -0.0066 2.4 -0.0163 5.7 -0.0162 5.7 -0.0059 1.2 -0.0066 2.4 -0.0059 1.2

TFare -0.0698 25.0 -0.0695 17.8 -0.0633 22.6 -0.0698 25.0 -0.0696 17.8 -0.0628 14.1 -0.0633 22.6 -0.0628 14.1

TConstant -1.1200 9.2 -1.1230 8.2 -1.4010 11.3 -0.4916 4.0 -0.4927 3.6 -1.4090 6.8 -0.7724 6.2 -0.7797 3.8

TCorr 0.0000 0.0 0.0000 - 0.0000 - -0.6287 0.0 -0.6287 - 0.0000 - -0.6287 0.0 -0.6287 -

Ride with  

Friend RRideExtra -0.0384 21.1 -0.0384 21.0 -0.0370 20.7 -0.0384 21.1 -0.0384 21.0 -0.0366 7.5 -0.0370 20.7 -0.0366 7.5

Already RRide -0.0220 9.1 -0.0219 7.3 -0.0153 6.4 -0.0220 9.1 -0.0219 7.3 -0.0152 2.8 -0.0153 6.4 -0.0152 2.8

Driving (R) RSchedMisF -0.0312 23.5 -0.0312 18.4 -0.0308 24.8 -0.0312 23.5 -0.0312 18.4 -0.0303 8.6 -0.0308 24.8 -0.0303 8.6

RConstant 0.0119 0.1 0.0107 0.1 -0.0887 0.8 0.5268 4.8 0.5256 5.3 -0.0867 0.4 0.4262 3.9 0.4282 1.9

RCorr 0.0000 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

Ride with  

Friend NOT DRide -0.0372 13.3 -0.0372 15.0 -0.0377 13.5 -0.0372 13.3 -0.0372 15.0 -0.0371 5.5 -0.0377 13.5 -0.0371 5.5

Already DConstant -1.6410 13.9 -1.6384 14.2 -1.4680 12.4 -0.5720 4.8 -0.5697 4.9 -1.4606 6.8 -0.3988 3.4 -0.3918 1.8

Driving (D) DCorr 0.0000 0.0 0.0000 - 0.0000 - -1.0690 0.0 -1.0688 - 0.0000 - -1.0690 0.0 -1.0688 -

Ride with  FRideExtra -0.0349 19.6 -0.0348 16.4 -0.0444 24.5 -0.0349 19.6 -0.0348 16.4 -0.0444 8.0 -0.0444 24.5 -0.0444 8.0

HH Relation FRide -0.0158 6.7 -0.0157 9.0 -0.0093 4.0 -0.0158 6.7 -0.0157 9.0 -0.0092 1.8 -0.0093 4.0 -0.0092 1.8

Already FSchedMisR -0.0261 21.0 -0.0261 19.0 -0.0251 20.2 -0.0261 21.0 -0.0261 19.0 -0.0248 9.1 -0.0251 20.2 -0.0248 9.1

Driving (F) FConstant -0.2420 2.2 -0.2430 2.8 -0.0069 0.1 0.2729 2.5 0.2719 3.1 0.0038 0.0 0.5080 4.7 0.5186 2.9

FCorr 0.0000 0.0 0.0000 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

Ride with  

HH Relation HRide -0.0411 14.3 -0.0411 9.4 -0.0347 12.3 -0.0411 14.3 -0.0411 9.4 -0.0343 4.4 -0.0347 12.3 -0.0343 4.4

NOT Already HConstant -1.1060 9.2 -1.1019 6.4 -1.1420 9.6 -0.0374 0.3 -0.0332 0.2 -1.1325 3.7 -0.0729 0.6 -0.0637 0.2

Driving (H) HCorr 0.0000 0.0 0.0000 - 0.0000 - -1.0690 0.0 -1.0688 - 0.0000 - -1.0690 0.0 -1.0688 -

sample size total interviewees 717 717 717 717 717 717 717 717

total observations 4212 4212 4212 4212 4212 4212 4212.0 4212

goodness of fit initial likelihood -20164.9 - -20164.9 -20345.3 - - -20436.7 -

final likelihood -17152.0 - -17144.7 -17152.0 - - -17144.7 -

r2(0) 0.1494 - 0.1498 0.1494 - - 0.1498 -

Figure 5: No Tree Structure IJSER
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Table 4: T-statistics for Coefficients Using the 
First Adjustment, Weighted Data, Basic Tree 

 
 
Table 5: T-statistics Values of Coefficients 
Considering the Second Adjustment, 
Uncertainty in Frequency of Alternatives' 
Availability, Basic Non-Nested Tree 

 
 

Table 6: T-stats on Coefficients with Third 
Adjustment, MRO Per Pers. Basic Non-Nested

 
 
 
Table 7: T-stats on Coefficients with All Three 
Adjustments Together, Basic Non-Nested Tree 

 

Sche BWal BRid BFar BWal BCon TRid TFar TCon RRid RRid RSch RCon DRid DCon FRid FRid FSch FCon HRid

BWalkOrig 12.0

BRide -5.8 -13.3

BFare 7.2 2.6 7.8

BWalkDest 13.7 0.2 15.0 -2.6

BConstant -34.8 -16.6 -13.8 -8.9 -18.8

TRide -4.6 -13.0 -1.2 -7.9 -14.5 5.7

TFare 13.6 -5.7 15.7 -5.0 -6.5 24.9 13.4

TConstant 8.9 8.3 9.0 7.8 8.2 9.2 9.0 8.6

RRideExtra 4.1 -10.5 7.8 -6.8 -11.9 21.1 6.5 -9.4 -8.9

RRide -3.2 -12.5 0.6 -7.6 -14.1 9.1 1.5 -13.0 -9.0 -5.4

RSchedMisF 0.7 -11.7 5.6 -7.2 -13.3 23.5 4.7 -12.5 -8.9 -3.2 3.4

RConstant -0.4 -1.1 -0.3 -1.6 -1.1 -0.1 -0.3 -0.7 -6.9 -0.5 -0.3 -0.4

DRide 2.4 -10.2 5.4 -6.8 -11.4 13.3 5.2 -8.3 -8.9 -0.4 4.1 1.9 0.4

DConstant 13.7 12.9 13.7 12.4 12.9 13.9 13.8 13.3 3.1 13.6 13.7 13.6 10.2 13.6

FRideExtra 2.4 -11.0 6.4 -6.9 -12.5 19.6 5.5 -10.5 -8.9 -1.4 4.3 1.6 0.4 -0.7 -13.6

FRide -5.7 -13.4 -1.6 -8.0 -15.1 6.7 -0.1 -14.8 -9.0 -7.6 -1.8 -5.7 0.2 -5.9 -13.8 -6.5

FSchedMisR -2.6 -12.5 3.1 -7.4 -14.2 20.9 3.2 -14.3 -9.0 -5.6 1.5 -2.8 0.3 -3.6 -13.7 -4.0 3.9

FConstant 2.0 1.2 2.1 0.7 1.2 2.2 2.1 1.6 -5.4 1.9 2.0 2.0 1.6 1.9 -8.7 1.9 2.1 2.0

HRide 3.7 -9.6 6.5 -6.6 -10.8 14.3 6.1 -7.2 -8.8 0.8 5.1 3.1 0.5 1.0 -13.6 1.8 6.8 4.8 -1.9

HConstant 9.0 8.3 9.0 7.8 8.3 9.2 9.1 8.6 -0.1 8.9 9.0 9.0 6.8 8.9 -3.2 8.9 9.1 9.0 5.4 8.9

Sche BWal BRid BFar BWal BCon Trid TFar TCon RRid RRid RSch RCon DRid DCon FRid FRid FSch FCon HRid

BWalkOrig 12.5

BRide -6.2 -13.6

BFare 4.03 -0.49 4.56

BWalkDest 17.1 2.17 18.3 1.48

BConstant -34 -16.9 -13 -5.6 -21.9

TRide -7.7 -14.7 -3.9 -5.2 -18.9 2.36

TFare 11.8 -6.92 14 -2.2 -10.5 22.6 14.7

TConstant 11.1 10.5 11.2 10.9 10.3 11.3 11.1 10.7

RRideExtra 3.99 -11 7.87 -3.6 -15.2 20.7 9.05 -8.1 -11

RRide -5.5 -13.8 -1.3 -4.7 -18 6.36 2.34 -13 -11.2 -7.4

RSchedMisF 1.2 -12.1 6.23 -3.9 -16.6 24.8 7.79 -11 -11.1 -2.9 5.88

RConstant 0.54 -0.23 0.64 -0.1 -0.4 0.81 0.75 0.23 -9.64 0.47 0.66 0.52

DRide 2.95 -10.4 5.98 -3.5 -14.3 13.5 7.88 -6.5 -11 0.21 6.14 2.29 -0.46

DConstant 12.2 11.6 12.3 12 11.4 12.4 12.4 11.9 0.47 12.1 12.3 12.2 10.6 11.9

FRideExtra 7.86 -9.96 11 -3.2 -14.1 24.5 11.3 -5.7 -10.9 2.94 9.74 6.28 -0.4 2.03 -12.1

FRide -8.1 -14.6 -3.5 -5.1 -18.9 4.01 0.73 -15 -11.2 -9.4 -1.8 -8.2 -0.72 -7.8 -12.4 -12

FSchedMisR -3.1 -13 3.25 -4.2 -17.5 20.2 5.99 -13 -11.1 -5.5 3.65 -3.4 -0.58 -4.1 -12.2 -9.5 5.97

FConstant -0.2 -1 -0.1 -0.9 -1.17 0.06 0 -0.5 -10.3 -0.3 -0.1 -0.2 -0.68 -0.3 -11.3 -0.3 -0 -0.2

HRide 1.88 -10.8 4.92 -3.7 -14.8 12.3 7.06 -7.2 -11 -0.7 5.23 1.28 -0.49 -0.8 -12.1 -2.9 6.96 3.11 0.26

HConstant 9.36 8.74 9.48 9.12 8.55 9.6 9.54 9.07 -1.83 9.29 9.47 9.34 8.09 9.28 -2.4 9.23 9.52 9.39 8.78 9.14

Sche BWal BRid BFar BWal BCon CCor TRid TFar TConTCor RRid RRid RSch RCon RCor DRid DConDCor FRid FRid FSch FCon FCor HRid HCon

BWalkOrig 12.1

BRide -6 -13.2

BFare 7.24 2.65 7.77

BWalkDest 13.8 0.2 15.1 -2.6

BConstant -35 -16.6 -14 -8.9 -18.8

CCorr -35 -16.6 -14 -8.9 -18.8 -

TRide -4.6 -13.1 -1.2 -7.9 -14.6 5.69 5.69

TFare 13.8 -5.74 15.8 -5 -6.57 24.9 24.9 13.8

TConstant 3.78 3.15 3.88 2.81 3.13 4.03 4.03 3.84 3.42

TCorr 692 77.2 417 25.5 85.8 - - 214 200 1.12

RRideExtra 4.22 -10.5 7.88 -6.8 -11.9 21.1 21.1 6.53 -9.51 -3.7 -324

RRide -3.2 -12.5 0.65 -7.6 -14.1 9.12 9.12 1.54 -13 -3.8 -252 -5.6

RSchedMisF 0.81 -11.8 5.67 -7.2 -13.4 23.5 23.5 4.75 -12.6 -3.8 -449 -3.5 3.38

RConstant -5 -5.81 -5 -6.5 -5.81 -4.75 -4.7 -4.9 -5.37 -7.5 -10 -5.1 -5.01 -5

RCorr 560 60.3 339 19.3 66.9 - - 174 159 0.19 - 262 205 364 9.385

DRide 2.47 -10.2 5.44 -6.8 -11.5 13.3 13.3 5.24 -8.35 -3.7 -212 -0.4 4.14 1.95 5.08 -171

DConstant 4.6 3.95 4.7 3.62 3.92 4.85 4.85 4.71 4.26 0.57 -0.5 4.52 4.66 4.58 8.409 0.48 4.46

DCorr 1201 143 718 49.5 159 - - 368 357 4.73 - 566 434 780 14.38 - 370 4.21

FRideExtra 2.48 -11 6.45 -7 -12.5 19.6 19.6 5.53 -10.7 -3.7 -334 -1.4 4.33 1.67 5.06 -270 -0.7 -4.6 -581

FRide -5.8 -13.5 -1.6 -8 -15.1 6.72 6.72 -0.1 -14.8 -3.9 -261 -7.6 -1.86 -5.7 4.887 -212 -5.9 -4.7 -448 -6.6

FSchedMisR -2.9 -12.5 3.16 -7.4 -14.2 20.9 20.9 3.17 -14.4 -3.8 -482 -5.6 1.53 -2.9 4.982 -391 -3.6 -4.6 -834 -4.3 3.83

FConstant -2.8 -3.6 -2.7 -4.2 -3.6 -2.53 -2.5 -2.7 -3.17 -5.8 -8.3 -2.9 -2.73 -2.8 2.084 -7.3 -2.9 -6.6 -12.4 -2.8 -2.64 -2.76

FCorr 560 60.3 339 19.3 66.9 - - 174 159 0.19 - 262 205 364 9.385 - 171 -0.5 - 270 212.38 391.02 7.29

HRide 3.72 -9.67 6.51 -6.6 -10.9 14.3 14.3 6.15 -7.23 -3.7 -205 0.79 5.1 3.14 5.115 -165 0.98 -4.5 -358 1.84 6.83 4.79 2.91 -165.10

HConstant 0.06 -0.62 0.14 -1.1 -0.63 0.31 0.31 0.18 -0.27 -3.2 -4.9 -0 0.13 0.05 4.258 -4 0 -3.9 -8.6 0.02 0.18 0.09 2.38 -3.98 -0.03

HCorr 1201 143 718 49.5 159 - - 368 357 4.73 - 566 434 780 14.38 - 370 4.21 - 581 448.17 834.30 12.43 - 358.17 8.60

Sche BWal BRid BFar BWal BCon TRid TFar TCon RRid RRid RSch RCon DRid DCon FRid FRid FSch FCon HRid

BWalkOrig 8.87

BRide -4.5 -10

BFare 6.6 2.35 7.11

BWalkDest 11.6 0.17 13.2 -2.3

BConstant -15 -12.3 -20 -8.1 -16.1

TRide -3.9 -10 -1.2 -7.2 -12.7 5.4

TFare 9.01 -4.25 12 -4.6 -5.44 17.4 10.9

TConstant 8.04 7.53 8.13 7.35 7.48 8.26 8.02 7.65

RRideExtra 3.05 -7.91 8.24 -6.2 -10.3 19.2 6.15 -7 -7.98

RRide -2.3 -9.4 0.57 -7 -12 7.3 1.35 -9.5 -8.1 -4.7

RSchedMisF 0.48 -8.7 5.01 -6.5 -11.3 15.6 4.17 -8.7 -8.03 -2.8 2.6

RConstant -0.4 -1.24 -0.3 -1.8 -1.25 -0.11 -0.3 -0.8 -8.12 -0.5 -0.3 -0.4

DRide 2.62 -8.02 7.7 -6.2 -10.4 18.6 5.83 -7.3 -7.98 -0.4 4.26 2.15 0.48

DConstant 14 13.5 14.1 13.5 13.4 14.2 14.1 13.6 3.5 13.9 14.1 14 13.4 13.7

FRideExtra 1.74 -8.29 6.63 -6.4 -10.8 17.4 5.16 -7.8 -8 -1.3 3.6 1.29 0.45 -0.9 -13.9

FRide -5.1 -10.4 -2 -7.3 -13.4 7.85 -0.1 -12 -8.14 -8 -1.7 -5.5 0.26 -7.6 -14.1 -6.9

FSchedMisR -1.9 -9.4 4.32 -6.8 -12.3 26.1 3.14 -11 -8.07 -5.6 1.33 -2.3 0.37 -5 -14 -4.2 4.59

FConstant 2.42 1.53 2.54 0.98 1.5 2.76 2.58 1.97 -6.53 2.32 2.51 2.41 2.41 2.34 -11.9 2.34 2.55 2.46

HRide 2.54 -7.13 5.1 -6 -8.97 10.3 5 -5.1 -7.95 0.61 3.85 2.24 0.52 0.88 -13.9 1.42 5.7 3.65 -2.29

HConstant 6.21 5.78 6.27 5.62 5.75 6.37 6.28 5.97 -0.12 6.15 6.24 6.19 6.65 6.15 -3.14 6.17 6.28 6.22 5.23 6.03

Sche BWal BRid BFar BWal BCon CCor TRid TFar TConTCor RRid RRid RSch RCon RCor DRid DConDCor FRid FRid FSch FCon FCor HRid HCon

BWalkOrig 6.89

BRide -2.9 -7.71

BFare 1.95 -0.3 2.23

BWalkDest 6.86 1.04 7.55 0.78

BConstant -9.6 -9.43 -9.4 -2.7 -8.83

CCorr -9.6 -9.43 -9.4 -2.7 -8.83 -

TRide -3.9 -8.29 -2.4 -2.6 -8.04 1.18 1.18

TFare 6.95 -3.99 9.87 -1 -4.51 15.7 15.7 9.13

TConstant 3.63 3.25 3.69 3.42 3.16 3.77 3.77 3.68 3.43

TCorr 200 43 305 14.3 33.1 - - 125 141 -0.7

RRideExtra 1.34 -5.9 3.34 -1.7 -6.08 7.32 7.32 4.31 -4.18 -3.6 -118

RRide -2.4 -7.53 -0.7 -2.3 -7.43 3.04 3.04 1.32 -7.45 -3.7 -123 -3.1

RSchedMisF 0.31 -6.58 2.61 -1.9 -6.65 7.58 7.58 3.76 -5.9 -3.6 -150 -1 2.43

RConstant -2 -2.39 -2 -2.4 -2.48 -1.87 -1.9 -1.9 -2.14 -4.8 -4.6 -2 -1.91 -2

RCorr 162 33.5 248 11.2 25.5 - - 102 113 -1.3 - 95.7 99.9 121 4.118

DRide 1.09 -5.49 2.54 -1.7 -5.8 5.3 5.3 3.65 -3.21 -3.6 -85 0.06 2.57 0.86 2.031 -68

DConstant 1.7 1.32 1.75 1.42 1.22 1.83 1.83 1.8 1.54 -1.6 -1.1 1.66 1.76 1.69 3.248 -0.6 1.62

DCorr 347 79.6 525 26.1 62.4 - - 213 252 1.4 - 206 211 260 6.537 - 147 3.16

FRideExtra 2.39 -5.15 4.08 -1.5 -5.53 7.4 7.4 4.93 -2.58 -3.6 -97 1.01 3.76 1.98 2.064 -78 0.8 -1.6 -171

FRide -3.4 -7.99 -1.8 -2.5 -7.77 1.84 1.84 0.47 -8.39 -3.7 -124 -3.9 -0.86 -3.3 1.909 -101 -3.3 -1.8 -212 -4.6

FSchedMisR -1.1 -7.17 1.72 -2.1 -7.09 8.27 8.27 3.24 -7.69 -3.6 -201 -2.1 1.66 -1.1 1.978 -163 -1.6 -1.7 -348 -3.1 2.664

FConstant -3 -3.54 -3 -3.6 -3.64 -2.87 -2.9 -2.9 -3.21 -5.8 -6.3 -3.1 -2.95 -3 -0.39 -5.7 -3.1 -4 -8.77 -3.1 -2.865 -2.994

FCorr 162 33.5 248 11.2 25.5 - - 102 113 -1.3 - 95.7 99.9 121 4.118 - 68.3 0.58 - 78.4 101.1 163.4 5.71

HRide 0.64 -5.48 1.89 -1.8 -5.83 4.29 4.29 3.02 -3.21 -3.6 -74 -0.2 2.03 0.45 2.018 -60 -0.3 -1.7 -129 -1 2.669 1.111 3.05 -60.08

HConstant 0.11 -0.16 0.15 -0.1 -0.23 0.21 0.21 0.19 0 -2.3 -1.8 0.09 0.16 0.11 1.586 -1.5 0.09 -1.1 -3.28 0.06 0.178 0.127 1.97 -1.475 0.094

HCorr 347 79.6 525 26.1 62.4 - - 213 252 1.4 - 206 211 260 6.537 - 147 3.16 - 171 211.9 348 8.77 - 129.3 3.285
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Table 8: T-stats with All Three Adjustments 
when Using an Adjusted Nested Tree 

 
 
Table 9: Ride Friend Already. Driving 

 
 
Table 10: Ride Friend NOT Already Driving 

 
Table 11: Parameters/T-Ratios for all Alts. 

 

 

 

 

 
 
 

Table 12: T-Stats Changes in Parameters in the 
Original Case after each Adjustment 

 
 
 
Table 13: T-Statistics for Constants Compared 
to Base Case 

 
*JK refers to Jackknife process; WT refers to weight adjustment; Freq 
refers to frequency adjustment; 
 

Table 14: The Value of Time 

 

Sche BWal BRid BFar BWal BCon CCor TRid TFar TCon TCor RRid RRid RSch RCon RCor DRid DCon DCor FRid FRid FSch FCon FCor HRid HCon HCor Thet Thet Thet

BWalkOrig 5.1

BRide -2.6 -5.4

BFare 3.7 0.6 3.9

BWalkDest 6.5 0.7 6.7 -0.2

BConstant -8.2 -6.0 -5.8 -4.5 -7.2

CCorr -8.2 -6.0 -5.8 -4.5 -7.2 -

TRide -4.2 -5.7 -2.7 -4.3 -6.9 1.2 1.2

TFare 4.2 -3.9 4.9 -2.8 -5.3 6.5 6.5 5.5

TConstant 4.7 4.5 4.8 4.5 4.5 4.8 4.8 4.8 4.6

TCorr 96.6 12.0 99.0 7.2 12.4 - - 77.4 35.4 -3.3

RRideExtra 1.1 -5.0 2.3 -3.6 -6.4 5.2 5.2 3.7 -3.2 -4.7 -51.9

RRide -2.7 -5.5 -1.1 -4.1 -6.7 2.7 2.7 1.2 -4.8 -4.8 -67.2 -2.8

RSchedMisF 0.5 -4.9 2.9 -3.6 -6.2 10.2 10.2 4.6 -3.8 -4.7 -115.6 -0.8 3.0

RConstant -0.3 -0.7 -0.3 -0.8 -0.8 -0.2 -0.2 -0.3 -0.5 -4.4 -1.7 -0.4 -0.3 -0.4

RCorr 77.7 8.7 80.0 5.1 8.9 - - 63.2 27.8 -3.6 - 41.6 54.5 92.8 1.4

DRide 0.9 -4.8 1.9 -3.5 -6.1 4.3 4.3 3.2 -2.5 -4.7 -40.6 0.2 2.4 0.7 0.4 -32.5

DConstant 3.8 3.5 3.8 3.5 3.5 3.8 3.8 3.8 3.7 -1.1 2.4 3.8 3.8 3.8 3.8 2.6 3.7

DCorr 170.0 24.6 172.3 15.3 26.2 - - 132.4 64.7 -2.3 - 91.9 116.1 203.6 2.7 - 72.1 -1.3

FRideExtra 2.7 -4.5 4.4 -3.4 -5.7 10.6 10.6 5.6 -2.6 -4.7 -94.2 0.6 4.1 2.3 0.4 -75.2 0.3 -3.7 -167.5

FRide -4.2 -5.5 -2.1 -4.1 -6.7 4.0 4.0 1.1 -5.3 -4.8 -121.8 -3.4 -0.4 -4.9 0.3 -99.0 -2.8 -3.8 -209.8 -6.3

FSchedMisR -1.6 -5.1 1.2 -3.8 -6.4 8.4 8.4 3.6 -4.3 -4.7 -117.4 -1.7 1.9 -2.0 0.3 -94.6 -1.4 -3.8 -205.4 -4.1 3.4

FConstant -0.9 -1.5 -0.9 -1.6 -1.5 -0.7 -0.7 -0.8 -1.1 -5.7 -2.8 -0.9 -0.8 -0.9 -0.3 -2.4 -0.9 -5.0 -4.2 -0.9 -0.8 -0.9

FCorr 77.7 8.7 80.0 5.1 8.9 - - 63.2 27.8 -3.6 - 41.6 54.5 92.8 1.4 - 32.5 -2.6 - 75.2 99.0 94.6 2.4

HRide 1.3 -4.5 2.7 -3.4 -5.7 6.6 6.6 4.3 -2.6 -4.7 -63.2 0.2 3.1 1.1 0.4 -50.6 0.0 -3.7 -112.1 -0.4 4.1 2.0 0.9 -50.6

HConstant 1.7 1.4 1.7 1.3 1.3 1.8 1.8 1.7 1.6 -2.8 0.5 1.7 1.7 1.7 2.0 0.7 1.6 -1.9 -0.4 1.6 1.7 1.7 2.6 0.7 1.6

HCorr 170.0 24.6 172.3 15.3 26.2 - - 132.4 64.7 -2.3 - 91.9 116.1 203.6 2.7 - 72.1 -1.3 - 167.5 209.8 205.4 4.2 - 112.1 0.4

Theta2 -174.8 -34.6 -172.5 -23.0 -38.5 - - -126.2 -73.2 -7.1 - -96.2 -113.8 -210.2 -2.0 - -75.7 -6.2 - -177.3 -204.0 -208.4 -2.6 - -117.8 -3.8 -

Theta4 -7.3 -9.3 -7.1 -8.9 -9.5 -6.7 -6.7 -6.8 -7.9 -7.8 -11.3 -7.5 -7.0 -7.2 -1.8 -10.4 -7.5 -6.6 -14.5 -7.3 -6.9 -7.1 -2.3 -10.4 -7.3 -3.9 -14.5 0.6

Theta3 -8.7 -9.8 -8.6 -9.5 -10.1 -8.3 -8.3 -8.3 -9.2 -6.7 -14.1 -8.7 -8.4 -8.7 -1.8 -13.0 -8.6 -5.8 -18.2 -8.8 -8.4 -8.6 -2.1 -13.0 -8.8 -3.5 -18.2 1.0 0.1

Theta1 -9.1 -10.1 -8.8 -8.7 -10.7 -8.1 -8.1 -8.2 -9.6 -5.6 -22.7 -9.1 -8.4 -9.2 -0.6 -20.1 -9.0 -4.6 -32.9 -9.4 -8.5 -9.0 -0.4 -20.1 -9.3 -2.4 -32.9 15.2 4.0 4.4

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  

Friend RRideExtra -0.0384 21.1 -0.0384 21.0 -0.0370 20.7 -0.0384 21.1 -0.0384 21.0 -0.0366 7.5 -0.0370 20.7 -0.0366 7.5

already RRide -0.0220 9.1 -0.0219 7.3 -0.0153 6.4 -0.0220 9.1 -0.0219 7.3 -0.0152 2.8 -0.0153 6.4 -0.0152 2.8

Driving (R) RSchedMisF -0.0312 23.5 -0.0312 18.4 -0.0308 24.8 -0.0312 23.5 -0.0312 18.4 -0.0303 8.6 -0.0308 24.8 -0.0303 8.6

RConstant 0.5268 0.1 0.0107 0.1 -0.0887 0.8 0.5268 4.8 0.5256 5.3 -0.0867 0.4 0.4262 3.9 0.4282 1.9

RCorr 0.0000 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  FRideExtra -0.0349 19.6 -0.0348 16.4 -0.0444 24.5 -0.0349 19.6 -0.0348 16.4 -0.0444 8.0 -0.0444 24.5 -0.0444 8.0

Friend NOT FRide -0.0158 6.7 -0.0157 9.0 -0.0093 4.0 -0.0158 6.7 -0.0157 9.0 -0.0092 1.8 -0.0093 4.0 -0.0092 1.8

already FSchedMisR -0.0261 21.0 -0.0261 19.0 -0.0251 20.2 -0.0261 21.0 -0.0261 19.0 -0.0248 9.1 -0.0251 20.2 -0.0248 9.1

Driving (R) FConstant -0.2420 2.2 -0.2430 2.8 -0.0069 0.1 0.2729 2.5 0.2719 3.1 0.0038 0.0 0.5080 4.7 0.5186 2.9

FCorr 0.0000 0.0 0.0000 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  

Friend RRideExtra -0.0384 21.1 -0.0384 21.0 -0.0370 20.7 -0.0384 21.1 -0.0384 21.0 -0.0366 7.5 -0.0370 20.7 -0.0366 7.5

Already RRide -0.0220 9.1 -0.0219 7.3 -0.0153 6.4 -0.0220 9.1 -0.0219 7.3 -0.0152 2.8 -0.0153 6.4 -0.0152 2.8

Driving (R) RSchedMisF -0.0312 23.5 -0.0312 18.4 -0.0308 24.8 -0.0312 23.5 -0.0312 18.4 -0.0303 8.6 -0.0308 24.8 -0.0303 8.6

RConstant 0.0119 0.1 0.0107 0.1 -0.0887 0.8 0.5268 4.8 0.5256 5.3 -0.0867 0.4 0.4262 3.9 0.4282 1.9

RCorr 0.0000 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  FRideExtra -0.0349 19.6 -0.0348 16.4 -0.0444 24.5 -0.0349 19.6 -0.0348 16.4 -0.0444 8.0 -0.0444 24.5 -0.0444 8.0

HH Relation FRide -0.0158 6.7 -0.0157 9.0 -0.0093 4.0 -0.0158 6.7 -0.0157 9.0 -0.0092 1.8 -0.0093 4.0 -0.0092 1.8

Already FSchedMisR -0.0261 21.0 -0.0261 19.0 -0.0251 20.2 -0.0261 21.0 -0.0261 19.0 -0.0248 9.1 -0.0251 20.2 -0.0248 9.1

Driving (F) FConstant -0.2420 2.2 -0.2430 2.8 -0.0069 0.1 0.2729 2.5 0.2719 3.1 0.0038 0.0 0.5080 4.7 0.5186 2.9

FCorr 0.0000 0.0 0.0000 - 0.0000 - -0.5149 0.0 -0.5149 - 0.0000 - -0.5149 0.0 -0.5149 -

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  DRide -0.0372 13.3 -0.0372 15.0 -0.0377 13.5 -0.0372 13.3 -0.0372 15.0 -0.0371 5.5 -0.0377 13.5 -0.0371 5.5

Friend NOT DConstant -1.6410 13.9 -1.6384 14.2 -1.4680 12.4 -0.5720 4.8 -0.5697 4.9 -1.4606 6.8 -0.3988 3.4 -0.3918 1.8

Already DCorr 0.0000 0.0 0.0000 - 0.0000 - -1.0690 0.0 -1.0688 - 0.0000 - -1.0690 0.0 -1.0688 -

Driving (D)

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

Ride with  HRide -0.0411 14.3 -0.0411 9.4 -0.0347 12.3 -0.0411 14.3 -0.0411 9.4 -0.0343 4.4 -0.0347 12.3 -0.0343 4.4

HH Relation HConstant -1.1060 9.2 -1.1019 6.4 -1.1420 9.6 -0.0374 0.3 -0.0332 0.2 -1.1325 3.7 -0.0729 0.6 -0.0637 0.2

NOT Already HCorr 0.0000 0.0 0.0000 - 0.0000 - -1.0690 0.0 -1.0688 - 0.0000 - -1.0690 0.0 -1.0688 -

Driving (H)

ITEMS ORIGINAL JACKKNIFE WEIGHT FREQUENCY JACK-KNIFE + JACK-KNIFE + WEIGHT + ALL FACTORS

RESULTS RESULTS RESULTS RESULTS FREQUENCY WEIGHT FREQUENCY

parameters estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs estimate abs

t ratio t ratio t ratio t ratio t ratio t ratio t ratio t ratio

taxi (T) TRide -0.0163 5.7 -0.0162 5.7 -0.0066 2.4 -0.0163 5.7 -0.0162 5.7 -0.0059 1.2 -0.0066 2.4 -0.0059 1.2

TFare -0.0698 25.0 -0.0695 17.8 -0.0633 22.6 -0.0698 25.0 -0.0696 17.8 -0.0628 14.1 -0.0633 22.6 -0.0628 14.1

TConstant -1.1200 9.2 -1.1230 8.2 -1.4010 11.3 -0.4916 4.0 -0.4927 3.6 -1.4090 6.8 -0.7724 6.2 -0.7797 3.8

TCorr 0.0000 0.0 0.0000 - 0.0000 - -0.6287 0.0 -0.6287 - 0.0000 - -0.6287 0.0 -0.6287 -

T-Statistic Weight Frequency JK/Freq JK/Weight WT/Freq All Factors

BWalkOrig 0.0189 0.0000 -0.0018 0.0170 0.0189 0.0170

BWalkDest 0.1714 0.0000 -0.0009 0.1711 0.1714 0.1711

BFare -0.3599 0.0000 -0.0012 -0.3670 -0.3599 -0.3670

TFare -0.0938 0.0006 -0.0029 -0.1001 -0.0938 -0.1001

BRide -0.0622 -0.0020 -0.0049 -0.0739 -0.0622 -0.0739

TRide -0.5842 -0.0024 -0.0059 -0.6100 -0.5842 -0.6100

RRide -0.3041 -0.0005 -0.0044 -0.3014 -0.3041 -0.3014

DRide 0.0126 -0.0005 0.0000 -0.0026 0.0126 -0.0026

FRide -0.4073 0.0000 -0.0063 -0.3983 -0.4073 -0.3983

HRide -0.1558 -0.0012 0.0000 -0.1624 -0.1558 -0.1624

RRideExtra -0.0372 0.0000 0.0000 -0.0465 -0.0372 -0.0465

FRideExtra 0.2710 -0.0009 -0.0029 0.2683 0.2710 0.2683

RSchedMisF -0.0131 0.0006 0.0000 -0.0286 -0.0131 -0.0286

FSchedMisR -0.0398 0.0011 0.0000 -0.0495 -0.0398 -0.0495

T-Statistic Weight Frequency JK/Freq JK/Weight WT/Freq All Factors

TConstant 5.2278 0.0000 0.0060 3.8181 1.6142 1.1990

RConstant 3.9384 0.0000 0.0080 2.4108 0.6437 0.3875

DConstant 5.3692 0.0000 -0.0140 3.6362 -1.0379 -0.7374

FConstant 1.8318 0.0000 0.0072 1.2767 -1.5393 -1.1657

HConstant 6.5361 0.0002 -0.0199 3.3317 0.2103 0.0800

  
VOT Based on BFare 

($/hr) No Tree 

VOT Based on 
BFare ($/hr) Full 

Tree 

Bus 7.45 6.39 

RRideExtra 14.17 10.26 

Rride 8.12 5.8 

Dride 13.70 11.88 

FRideExtra 12.88 8.81 

Fride 5.83 4.16 

Hride 15.17 11.47 
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